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Abstract
Foundation models exhibit strong capabilities for
downstream tasks by learning generalized repre-
sentations through self-supervised pre-training on
large datasets. While several foundation mod-
els have been developed for single-cell RNA-seq
(scRNA-seq) data, there is still a lack of mod-
els specifically tailored for single-cell ATAC-seq
(scATAC-seq), which measures epigenetic infor-
mation in individual cells. The principal challenge
in developing such a model lies in the vast number
of scATAC peaks and the significant sparsity of
the data, which complicates the formulation of
peak-to-peak correlations. To address this chal-
lenge, we introduce EpiFoundation, a foundation
model for learning cell representations from the
high-dimensional and sparse space of peaks. Epi-
Foundation relies on an innovative cross-modality
pre-training procedure with two key technical in-
novations. First, EpiFoundation exclusively pro-
cesses the non-zero peak set, thereby enhancing
the density of cell-specific information within the
input data. Second, EpiFoundation utilizes dense
gene expression information to supervise the pre-
training process, aligning peak-to-gene correla-
tions. EpiFoundation can handle various types of
downstream tasks, including cell-type annotation,
batch correction, and gene expression prediction.
To train and validate EpiFoundation, we curated
MiniAtlas, a dataset of 100,000+ single cells with
paired scRNA-seq and scATAC-seq data, along
with diverse test sets spanning various tissues and
cell types for robust evaluation. EpiFoundation
demonstrates state-of-the-art performance across
multiple tissues and diverse downstream tasks.
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EpiFoundation.

Figure 1. Pre-training data of proposed EpiFoundation. We
propose the MiniAtlas dataset, containing more than 100,000
scATAC-seq with paired scRNA-seq as training data, across 19
tissues and 56 cell types, facilitating the training of foundation
models. We cluster all cells using embedding extracted by Epi-
Foundation, and color each cell by ground-truth (a) tissue and (b)
cell-type label. EpiFoundation enables modeling cell representa-
tion while preserving tissue and cell-type specific information.

1. Introduction
Single-cell ATAC-seq (Assay for Transposase-Accessible
Chromatin using sequencing) (Buenrostro et al., 2015) pro-
vides unprecedented resolution in understanding the regu-
latory landscape of individual cells by profiling chromatin
accessibility. This technology enables the identification
of active regulatory elements such as promoters, enhancers,
and transcription factor binding sites at a single-cell level, of-
fering valuable insights into gene regulation and epigenomic
heterogeneity across complex biological systems (Zhang
et al., 2021; Zu et al., 2023; Cusanovich et al., 2018). This
technology is particularly effective in distinguishing cell
types, states, and lineages within heterogeneous tissues, as
well as uncovering dynamic changes in chromatin acces-
sibility during processes like development, differentiation,
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and disease progression (Kim et al., 2024; Buenrostro et al.,
2015). By linking regulatory elements to gene expression
and integrating multi-omics data, single-cell ATAC-seq has
become a critical tool for elucidating the mechanisms un-
derlying cellular identity and function, advancing our under-
standing of gene regulation in both health and disease.

Recent advances in foundation models have revolutionized
single-cell analysis by leveraging large-scale pre-training on
extensive datasets. Models such as Geneformer (Theodoris
et al., 2023), scGPT (Cui et al., 2024a), scBERT (Yang
et al., 2022), and scFoundation (Hao et al., 2024a) utilize
the self-supervised learning strategy akin to Masked Lan-
guage Modeling (MLM) employed in BERT (Kenton &
Toutanova, 2019). In particular, these models conceptualize
a single cell as ”a sentence of genes”, wherein certain gene
expressions are randomly masked, and the model is trained
to predict the masked expressions based on the expressions
of the remaining genes, thereby capturing gene-to-gene cor-
relations. These models can subsequently be fine-tuned
for a variety of downstream applications, providing greater
adaptability and efficacy in comparison to approaches tai-
lored to specific tasks. Nonetheless, contemporary foun-
dation models predominantly target scRNA-seq data and
lack optimization for encoding scATAC-seq data. While
most existing methods for single-cell ATAC-seq data are
task-specific (Lal et al., 2021; Ji et al., 2020; Xiong et al.,
2019; Ashuach et al., 2023), foundation models have the
potential to significantly enhance these methods and enable
the extraction of information from a broader perspective.

However, these scRNA-seq solutions cannot be directly ap-
plied to scATAC-seq due to the unique challenges associated
with modeling scATAC-seq data. The data typically com-
prises a vast number of peaks (accessible chromatin regions),
often ranging from 105 – 106, and suffers from high sparsity
due to the limited DNA molecules available for sequencing,
typically only two copies per chromosome in diploid cells
(Ji et al., 2020). Given the huge scale of peak numbers, en-
coding all peaks results in unacceptable computational costs.
Furthermore, modeling peak-to-peak correlations from such
sparse data presents additional difficulties. These challenges
necessitate the development of innovative methodologies to
effectively analyze and interpret single-cell ATAC-seq data.

In this paper, we introduce EpiFoundation, a foundational
model specifically designed for single-cell ATAC-seq data.
The model addresses the aforementioned challenges by in-
corporating the following technique contributions: (1) We
argue that determining ”which peaks are expressed” suf-
fices for cell representation modeling and propose to model
single cells using their non-zero peaks set. This approach
enhances the density of cell-specific information within the
input data, thereby improving the model’s efficiency and its
capacity to capture meaningful regulatory signals. (2) We

utilize paired gene expression signals as the training super-
vision, facilitating the peak-to-gene alignment and ensuring
that cell representations are accurately linked to phenotypes,
which are typically defined by transcriptomic data.

Moreover, to provide paired transcriptomic and epigenomic
information, we curated the MiniAtlas, a high-quality
single-cell multi-omics dataset with both scRNA-seq and
scATAC-seq measurements per cell. As shown in Figure 1,
the MiniAtlas spans 19 tissues and 56 cell types, with uni-
formly called peaks to ensure comparability across samples,
serving as the foundation for training and evaluating Epi-
Foundation. In addition, we also curate heterogeneous test
sets from distinct samples to validate our model, includ-
ing three datasets from bone marrow mononuclear cells
(BMMC), kidney, and peripheral blood mononuclear cells
(PBMC) tissues, as well as an ALLTissue test set encom-
passing all tissues in the MiniAtlas.

EpiFoundation is tailored for crucial scATAC-seq data anal-
ysis tasks, encompassing cell type annotation, batch cor-
rection, and gene expression prediction. In the domains
of cell type annotation and batch correction, the model
integrates chromatin accessibility measurements per cell,
enabling precise identification of cell identity and exceed-
ing the accuracy attained by state-of-the-art methodologies.
Gene expression prediction is inherently supported by the
model’s architecture, where gene expression serves as a
supervised signal during pre-training. Subsequently, the
model is further fine-tuned to predict more fine-grained
gene expression. We compare EpiFoundation with Gene Ac-
tivity (Stuart et al., 2021), a widely applied gene expression
prediction methodology. Our model demonstrates state-of-
the-art performance, significantly outperforming existing
methods across multiple datasets and metrics.

2. Related Works
2.1. Foundation models for scRNA-seq data

Geneformer (Theodoris et al., 2023), scGPT (Cui et al.,
2024a), scBERT (Yang et al., 2022), and scFoundation (Hao
et al., 2024a) are foundation models pre-trained on extensive
datasets comprising millions of scRNA-seq profiles. These
models exhibit promising performance in a variety of tasks,
including cell type annotation, batch integration, perturba-
tion modeling, and gene network inference. Additionally,
GenePT (Chen & Zou, 2024) employs GPT-3.5 to generate
gene embeddings based on textual descriptions, demon-
strating comparable performance. GPT-4 itself can also be
viewed as a foundation model and can be applied to down-
stream tasks such as cell type annotation (Hou & Ji, 2024)
and answering genomic questions (Hou & Ji, 2023). Lang-
Cell (Zhao et al., 2024) and ZerOmics (Anonymous, 2025)
combine the cell encoder with text encoders describing cell
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metadata, further expanding its applications. Nonetheless,
these models lack specific technical design tailored to the
challenges in modeling scATAC-seq data.

2.2. Foundation models for gene regulation

General Expression Transformer (GET) (Fu et al., 2025)
models pseudobulk scATAC-seq signals and incorporates
transcription factor information to identify cell-type-specific
gene regulation. While effective for regulatory program
prediction, this approach sacrifices single-cell resolution,
constraining its ability to capture cellular heterogeneity. A
recent preprint, CREformer (Yang et al., 2024), integrates
bulk epigenetic data with single-cell paired RNA-seq and
ATAC-seq for epigenetic regulation tasks, such as predicting
master regulators, enhancers, and functional variants. How-
ever, both approaches focus on paired data and regulation-
related tasks rather than exclusively addressing scATAC-seq
data analysis.

2.3. Methods for analyzing scATAC-seq data

scCLIP (Xiong et al., 2023) integrates data from two single
modalities, SCATE (Ji et al., 2020) and AtacWorks (Lal
et al., 2021) to enhance signal quality. SCALE (Xiong
et al., 2019) extracts latent features for denoising and cell
clustering. BAVARIA (Kopp et al., 2022) uses variational
autoencoders for dimension reduction and batch correction.
MultiVI (Ashuach et al., 2023), a deep generative model, is
designed for multi-omics analysis and single-modality data
integration. These task-specific models highlight the need
for a foundation model specifically tailored to scATAC-seq
data to support a broader range of downstream analyses.

3. Method
3.1. Problem Formulation

The proposed EpiFoundation aims to address the following
problem: consider a matrix A ∈ {0, 1}NC×NP that rep-
resents the binary expression counts of peaks. Ai,j = 1
indicates that peak j is expressed within cell i, and con-
versely. Herein, NC and NP correspond to the total number
of cells and the number of peaks in the dataset, respec-
tively. P = {p1, p2, · · · , pNP

} denotes all peaks within
the dataset. For each cell i, our objective is to construct
its cellular representation zic by aligning the peak-to-gene
correlations during the pre-training of the model, based on
A[i, :], which represents the expression of each peak within
i. Specifically, the model is trained to predict the paired
binary expression of genes within the same single cell (de-
noted as Bbinary[i, :]), where Bbinary ∈ {0, 1}NC×NG is
the binary expression matrix of genes, with NG indicating
the total number of genes. And Bbinary is obtained from

raw gene expression counts Braw by:

Bbinary
i,j =

{
1, if Braw

i,j > 0,
0, if Braw

i,j = 0.
(1)

For downstream applications, we extract zic for each cell uti-
lizing the pre-trained weights, and train distinct decoders to
predict the cell type label ti and the fine-grained expression
of each gene using zic. Furthermore, zic can be viewed as an
unbiased representation of cells and employed in the task of
batch correlation.

3.2. Data Collection

In this section, we provide specifics regarding how we col-
lect datasets encompassing the aforementioned data, es-
sential for the training of EpiFoundation. As shown in
Figure 1, we collect a 10X Multiome MiniAtlas (scATAC-
seq and scRNA-seq coassay) of over 100,000 cells across
19 tissues and 56 cell types. To collect such data, 10X
Multiome samples were collected from GEO (Clough &
Barrett, 2016) and ENCODE (Snyder et al., 2020) as raw
sequencing files in FASTQ format. Raw sequencing data
is processed with 10x Cell Ranger ARC software (version
2.0.1) to align the reads to the human GRCh38 genome
(10x version 2020-A-2.0.0), which produced a gene-cell
count matrix for RNA-seq and a fragment file for ATAC-
seq. All fragment files for ATAC-seq were pooled to call
peaks P using MACS2 (version 2.2.7.1) (Zhang et al., 2008).
The peak cell count matrix Araw for the ATAC-seq was
calculated using the feature matrix function pro-
vided by the R package Signac (version 1.8.0) (Stuart et al.,
2021). The binarized peak-cell count matrix A was con-
structed from Araw by setting counts to 1 for values greater
than 1. The RNA count matrix was normalized and log-
transformed using the NormalizeData function to ob-
tain Braw. For each sample, cells were clustered based
on the information from both RNA and ATAC modalities
using FindMultiModalNeighbors function provided
by Seurat (version 4.3.0) (Hao et al., 2024b). We then
computed the Spearman correlation coefficient between cell
cluster expression and cell type expression profiles provided
in the DISCO database (Li et al., 2022) to assign a cell type
label t to each cluster. We provide more details regarding
the data collection in the Appendix A.

3.3. Model Pre-training

Due to the extensive and sparse characteristics of the peak
dataset, embedding all peaks is inefficient. In this paper,
we hypothesize that (1) only determining which peaks are
expressed within the cell i suffices to construct its cell-level
representation, and (2) the alignment of peak-to-gene corre-
lations facilitates cell modeling. To formulate cell represen-
tation, as shown in Figure 2(a), we initially transform the set
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Figure 2. The overview of EpiFoundation. (a) Model pre-training with paired ATAC and RNA sequence data. For each single cell,
embedding of non-zero peak sequence (Zi

peak) and corresponding chromosomes (Zi
chr) is processed using Transformer blocks to obtain

the cell embedding zic. After that, zc is concatenated with batch embedding zib to remove batch effect. We use fused cell embedding to
predict binary expression of each genes as training objective. (b) Downstream application of EpiFoundation. Pre-trained foundation
model can be fine-tuned into downstream tasks including cell type annotation, batch correlation, and gene expression correlation.

of non-zero peaks alongside their respective chromosomes
into input embedding (Section 3.3.1). Subsequently, we
employ transformer blocks to process the input embedding
for generating cell representation (Section 3.3.2), and ulti-
mately perform peak-to-gene alignment as the pre-training
objective (Section 3.3.3).

3.3.1. INPUT EMBEDDING.

Input embedding of EpiFoundation is composed of two
parts: non-zero peaks embedding alongside their corre-
sponding chromosome embedding. Firstly, non-zero peaks
embedding for cell i can be formulated as:

Zi
peak = Epeak

(
P+
i

)
, P+

i = {pk | Ai,k = 1} , (2)

where Zi
peak ∈ R|P+

i |×dm denotes the peak embedding, dm
represents the embedding dim, and | P+

i | is the number
of non-zero peaks within cell i. Epeak ∈ RNP×dm is the
embedding layer for peak modeling. For most of the cells,
NP ≫| P+

i |. Our proposed non-zero peak embedding
improves the density of cell-specific information within the
input sequence and facilitates more effective cell model-
ing. If the number of non-zero peaks | P+

i | in cell i is
greater than the pre-defined maximum sequence Lpeak, we
randomly sample Lpeak non-zero peaks. In all of our exper-
iments, we set Lpeak = 12, 000 to make sure that for more
than 95% of cells, all non-zero peaks are contained in the
input sequence.

Additionally, we find the corresponding chromosome for
each peak in P+

i , obtaining the chromosome list of cell i as:

Ri =
[
chr1, · · · chr|P+

i |

]
, (3)

where P+
i,j belongs to chromosome chrj for ∀j ∈[

1, | P+
i |

]
. Then we formulate the chromosome embed-

ding as:
Zi

chr = Echr

(
Ri

)
, (4)

where Echr ∈ RNchr×dm is the chromosome embedding
layer. Here, Nchr denotes the total number of chromosomes,
including 22 human autosomes and the sex chromosomes X
and Y. Finally, the input embedding for cell i is formulated
as:

Zi = Zi
peak + Zi

chr. (5)

3.3.2. CELL REPRESENTATION.

The input embedding Zi ∈ R|P+
i |×dm in Equation (5) is

then encoded into cell representation by the Transformer
blocks. Specifically, we add a [CLS] token at the beginning
of the input peaks sequence. After NL layers of Transformer
blocks, we obtain the embedding of [CLS] token as the
representation for cell i:

Zi
0 = Zi,

Zi
l = transformer blockl

(
Zi

l−1

)
, l ∈ [1, NL],

zic ∈ Rdm = Zi
NL

[0, :] .

(6)

Following scGPT (Cui et al., 2024b), we incorporate sep-
arate batch information during the pre-training process
to mitigate the bias introduced by different batches of
cells. Specifically, for cell i which belongs to batch bi ∈
B = {b1, · · · , bNB

}, where NB is the number of different
batches in the training data. The batch embedding is gener-
ated through an independent embedding layer Ebatch. Sub-
sequently, the correlated cell representation z̃ic ∈ R2×dm

is obtained by concatenating the zic from Equation (6) and
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zib. This procedure can be represented by the following
formulation:

z̃ic = zic ⊗ zib, z
i
b = zic ⊗ Ebatch (bi) . (7)

Where ⊗ denotes the concatenation operation. Note that
batch information is only used during the model pre-training
to make sure that the cell representation obtained from the
non-zero peak set by Equation (6) is unbiased during fine-
tuning and evaluation.

3.3.3. PEAK-TO-GENE ALIGNMENT.

During the pre-training stage, EpiFoundation is trained to
learn the internal peak-to-gene alignment within the foun-
dation model by predicting binary gene expression. This
process is aimed at formulating cellular representations that
facilitate the integration of these two modalities. For cell
i, a gene set Gi =

{
g1, g2, · · · , gLgene

}
containing Lgene

genes is randomly sampled from the gene sets G, which en-
compass a total of NG genes. In our experiments, Lgene is
configured at 8,000, encompassing the majority of non-zero
genes across all cells, thereby facilitating dense and effective
pre-training supervision. Moreover, each Gi is curated to
possess an equal distribution of genes with and without ex-
pression, thus guaranteeing that the model is trained without
bias. Then, the ground-truth expression of cell i on gene set
Gi can be denoted as eibinary ∈ {0, 1}Lgene = Bbinary [i, :].
To predict eibinary, we first get the embedding of genes in
Gi by:

Zi
gene = Egene (Gi) , (8)

where Zi
gene ∈ RLgene×dm and Egene ∈ RNG×dm . We

broadcast z̃ic to Z̃i
c ∈ R2dm×Lgene =

[
z̃ic, z̃

i
c, · · · , z̃ic

]
,

which is concatenated with the gene embedding. This com-
bined representation serves as the input of a simple decoder
Dpre to predict binary expression. In summary, we for-
mulate the binary gene expression prediction process as
follows:

êibinary = Dpre

(
Z̃i

c ⊗ Zi
gene

)
. (9)

Finally, the loss function for the EpiFoundation model pre-
training is formulated as:

Lpre = CE
(
eibinary, ê

i
binary

)
, (10)

where CE denotes the cross-entropy loss.

3.4. Downstream Applications

The pre-trained EpiFoundation model enables the generation
of high-quality cell representations by modeling the correla-
tion between ATAC and gene modalities. Consequently, as
shown in Figure 2(b), this pre-trained model can be adapted
for various downstream applications in single-cell analysis

via supervised fine-tuning, including batch correlation, cell
type annotation, and gene expression prediction.

For the cell type annotation and batch correlation tasks,
we compile fine-tuning datasets comprising binary peak
expression counts alongside the corresponding ground-truth
cell type labels for various tissues. For cell i, its ground-
truth cell type label is denoted as ti. We regress the cell
representation zic from Equation (6) into the prediction of
cell types, and the loss function for cell type annotation
fine-tuning is formulated as:

t̂i = Dcell(z
i
c), (11)

Lcell = CE
(
ti, t̂i

)
, (12)

where Dcell is the cell type decoder, and t̂i is the cell type
prediction.

For the gene expression prediction, our objective is to
refine the model to predict fine-grained gene expression
values, as opposed to the peak-to-gene alignment the pre-
training phase. We normalize and categorize the raw gene
expression counts Braw into Nbin = 10 of expression lev-
els. Categorized gene expression counts are represented
as BNbin ∈ {0, 1, · · · , Nbin − 1}NC×NG . Similarly, we
predict categorized gene expression from zic, and use mean
square error as the fine-tuning loss:

êiNbin
= Dexp

(
Zi

c ⊗ Zi
gene

)
, (13)

Lpre = MSE
(
eiNbin

, êiNbin

)
, (14)

where eiNbin
and êiNbin

denote ground-truth and predicted
expression values respectively. Zi

c ∈ Rdm×Lgene =[
zic, · · · , zic

]
is the broadcasting of zic, and Dexp is the cate-

gorized expression decoder.

4. Experiments
4.1. Experiment Settings

Training Parameters: The Transformer model within the
EpiFoundation comprises 6 attention blocks based on Flash-
attention2 (Dao, 2023), with embedding dim dm = 512. We
train the model for 140 epochs, employing a batch size of
8 alongside gradient accumulation steps of 20. Additional
training specifics are documented in Appendix B.1.

Evaluation Datasets: We collect datasets from three tis-
sues for evaluation, including kidney, peripheral blood
mononuclear cells (PBMC), and bone marrow mononuclear
cells (BMMC) following the same method in Section 3.2.
Each dataset is randomly divided into fine-tuning and test-
ing sets. Additionally, we also collect an ALLTissue test set
that encompasses all tissues of the training set. More details
regarding the data collection can be found in Appendix A.
All evaluation data used in this paper will also be made
publicly available.
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Table 1. Quantitative comparison on batch correlation. We compete EpiFoundation with state-of-the-art batch correlation methods
on datasets from three tissues across four biological conservation metrics and 2 batch integration metrics. EpiFoundation achieves best
performance in the majority of the evaluated metrics and datasets.

Dataset Method
Biological Conservation Batch Integration

ISO↑ NMI↑ cASW↑ cLISI↑ bASW↑ GC↑

Kidney

PCA 0.4568 0.3273 0.5346 0.9936 0.8504 0.4714
scANVI (Xu et al., 2021) 0.5668 0.2007 0.4743 0.9962 0.8890 0.7732
Harmony (Korsunsky et al., 2019) 0.4459 0.2964 0.5375 0.9934 0.8735 0.3995
LIGER (Welch et al., 2019) 0.5288 0.0942 0.2581 0.9700 0.7252 0.2911
EpiFoundation (ours) 0.4995 0.5681 0.6685 1.0000 0.9069 0.8267

BMMC

PCA 0.5310 0.5039 0.4491 0.9753 0.8240 0.4887
scANVI (Xu et al., 2021) 0.4836 0.4823 0.4742 0.9769 0.8623 0.6500
Harmony (Korsunsky et al., 2019) 0.5241 0.4760 0.4555 0.9598 0.8093 0.3739
LIGER (Welch et al., 2019) 0.5277 0.3942 0.4157 0.9482 0.7164 0.4919
EpiFoundation (ours) 0.5508 0.5773 0.5599 0.9876 0.8959 0.6856

PBMC

PCA 0.7462 0.6718 0.4461 0.9892 0.8821 0.3234
scANVI (Xu et al., 2021) 0.5798 0.4934 0.4985 0.9831 0.8782 0.6148
Harmony (Korsunsky et al., 2019) 0.7096 0.6355 0.4493 0.9880 0.8571 0.2807
LIGER (Welch et al., 2019) 0.5215 0.0644 0.4378 0.7587 0.8747 0.1868
EpiFoundation (ours) 0.6377 0.7378 0.5965 0.9991 0.9038 0.6837

Figure 3. Classification performance of EpiFoundation on
PBMC dataset. Each column represents a single cell colored
by ground-truth cell type, while each row represents the predicted
cell type. The colors in the heatmap refect the softmax score output
from EpiFoundation, which indicates the confidence of the model
in assigning a cell to a particular cell type.

Comparing Methods: We select various competing meth-
ods for different tasks to validate the effectiveness of the
proposed EpiFoundation. For the batch correlation task, we
compare our methods with state-of-the-art methods includ-
ing scANVI (Xu et al., 2021), Harmony (Korsunsky et al.,
2019), LIGER (Welch et al., 2019), and Principal Compo-
nent Analysis (PCA) from binary expression counts of peaks.
For the gene expression prediction task, we compare Epi-
Foundation with Gene Activity (Stuart et al., 2021). More
details of competing methods are provided in Appendix B.2.

Evaluation Metrics: For batch correlation task, we em-
ploy four widely recognized biological conservation metrics
alongside two batch integration metrics. Biological conser-
vation metrics are utilized to assess the preservation of mean-
ingful biological variations inherent within a dataset, specif-
ically: (1) Isolated Label Score (ISO) (Luecken et al., 2022),
(2) Normalized Mutual Information (NMI), (3) Average Sil-
houette Width (ASW) (Luecken et al., 2022), and (4) Cell-
type Local Inverse Simpson Index score (cLISI) (Büttner
et al., 2019). Batch correction metrics are designed to eval-
uate the efficacy of batch effect removal, including Graph
Connectivity (GC) and Batch Average Silhouette Width
(ASWb) (Luecken et al., 2022). For cell type annotation,
we choose accuracy (ACC), F1-score (Macro F1 and Micro
F1), and Receiver Operating Characteristic Area Under the
Curve (ROC-AUC) as the evaluation metrics. Finally, for
gene expression prediction task, we utilize the MSE, Spear-
man Correlation Coefficient (SRCC), and Pearson Corre-
lation Coefficient (PRCC) between the model prediction
and paired ground-truth expression levels as the evaluation
metrics. Further details concerning the metrics employed
can be found in Appendix B.3.

4.2. Cell Type Annotation

Cell type annotation is a crucial task for single-cell analysis,
facilitating the comprehension of cellular composition and
diversity within a given sample. Proposed EpiFoundation
enables the assignment of cell types to individual cells based
on the expression profile of peaks, demonstrating the po-
tential for single-cell analysis from a novel dimension. As
demonstrated in Table 2, we evaluate EpiFoundation on four
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Figure 4. Qualitative comparison on batch correlation. We cluster cells in testing set of PBMC and BMMC using embedding from
state-of-the-arts methods including Harmony (Korsunsky et al., 2019), LIGER (Welch et al., 2019), scANVI (Xu et al., 2021), PCA of
peaks expression, and proposed EpiFoundation. Our method demonstrates best performance across all competing methods, suggesting
EpiFoundation can effectively remove batch efforts between different samples, while perserving the meaningful cell-specific variations.

Table 2. Performance of EpiFoundation on cell type annotation.
We evaluate our model on three tissues, and Mini-atlas which
integrate data from all tissues. Among all datasets, EpiFoundation
demonstrates promising performance in determining the cell-type
based on scATAC-seq.

Dataset ACC↑ Macro F1↑ Micro F1↑ ROC-AUC↑
Kidney 0.9135 0.7081 0.9135 0.9866
PBMC 0.8837 0.6299 0.8837 0.9764
BMMC 0.7615 0.5026 0.7615 0.9758

ALLTissue 0.8423 0.6934 0.8423 0.978

datasets from different tissues. For each dataset, EpiFounda-
tion is fine-tuned to predict the ground-truth cell-type label
for each cell, as indicated in Equation (12). In all datasets,
EpiFoundation yielded favorable results across various met-
rics, including accuracy, macro and micro F1 scores, and
ROC-AUC, illustrating its effectiveness in predicting cell
type from the non-zero peak set.

Additionally, we demonstrate the classification performance
of EpiFoundation in Figure 3, where EpiFoundation demon-
strates high classification accuracy, as indicated by the di-
agonal pattern of high-confidence predictions, highlighting
the robustness of EpiFoundation in distinguishing complex

cell types and effectively handling rare populations or those
with similar transcription profiles.

4.3. Batch Correction

Batch effect refers to the variations observed in gene or
peak expression data, which originate from technical dis-
crepancies between distinct batches of samples processed at
varying times or in separate laboratory environments, poten-
tially obscuring the true biological differences among single
cells. EpiFoundation facilitates the removal of batch effect
by modeling robust representation for each individual cell,
which conserves essential biological information necessary
for aligning peak-to-gene correlations. We extract cell em-
bedding using EpiFoundation fine-tuned on the cell-type
annotation task, and compare our method against various
state-of-the-art methods. On each dataset, we evaluate the
biological conservation and batch integration capabilities of
the extracted embedding.

According to the quantitative results presented in Table 1,
EpiFoundation exhibits superior performance across the ma-
jority of datasets and evaluation metrics, demonstrating its
capability to model meaningful and unbiased cell represen-
tations. Moreover, as shown in Figure 4, we cluster the cell
embedding of different methods using UMAP (McInnes
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Table 3. Quantitative comparison on gene expression predic-
tion. We compare proposed EpiFoundation with Gene Activ-
ity (Stuart et al., 2021). Our model consistently performs better
among all datasets, suggesting the efficacy of EpiFoundation in
modeling peak-to-gene correlation.

Metric Dataset Gene
Activity

EpiFoundation
(ours)

MSE↓

PBMC 10.2098 6.7642
BMMC 12.5869 8.7789
Kidney 11.5899 7.5959

ALLTissue 11.1423 9.0777

SRCC↑

PBMC 0.1609 0.4221
BMMC 0.1766 0.3661
Kidney 0.1971 0.4030

ALLTissue 0.1772 0.3843

PRCC↑

PBMC 0.1635 0.4776
BMMC 0.1779 0.3992
Kidney 0.2021 0.4422

ALLTissue 0.1803 0.4056

et al., 2018), and color each individual cell by its cell-type
and batch labels respectively. The clustering outcomes of
EpiFoundation achieve the highest normalized mutual in-
formation relative to the ground-truth cell-type labels and
exhibit the best graph connectivity.

4.4. Gene Expression Prediction

EpiFoundation formulates cross-modality correlation be-
tween peaks and genes, thus enabling the prediction of how
active a specific gene will be within an individual cell from
its non-zero peak set. As shown in Equation (14), we fine-
tune the pre-trained EpiFoundation on datasets containing
single tissue (PBMC, BMMC, and Kidney) and multiple tis-
sues (ALLTissue), respectively. We compare EpiFoundation
with Gene Activity (Stuart et al., 2021), which is widely
applied to predict gene expression activity by summariz-
ing the ATAC-seq reads near the transcription start sites of
genes. The evaluation focuses specifically on protein-coding
genes with results shown in Table 3. When compared to
Gene Activity, our method exhibits significantly superior
performance across all evaluation metrics and datasets, in-
dicating that EpiFoundation achieves better alignment of
peak-to-gene correlations.

4.5. Ablation Studies

In this section, we examine the impact of two critical tech-
nical strategies employed in the training of EpiFoundation:
the incorporation of batch labels to enhance batch corre-
lation, and the introduction of chromosome information,
respectively. Upon the exclusion of the batch label, the cell
embedding zic in Equation (6) is employed independently for

Table 4. Ablation experiment on batch and chromosome label.
We remove the batch and chromosome label in our pipeline, and
evaluating the performance of batch correlation on the kidney
tissue. A decline performance is observed when removing both of
two information, indicating the effectiveness of these settings.

Batch Label Chromosomes NMI↑ ASWb↑
✓ ✗ 0.4695 0.8891
✗ ✓ 0.4354 0.8986
✓ ✓ 0.5681 0.9069

peak-to-gene alignment, without concatenating it with batch
embedding as illustrated in Equation (7). In this setting, the
fine-tuning process is identical to baseline EpiFoundation
following the Equation (11) and Equation (12).

Similarly, to remove the chromosome information, peak
embedding Zi

peak is utilized directly as the model’s input
embedding Zi, without the incorporation of chromosome
embedding as shown in Equation (5). The chromosome
information will be removed during both the pre-training
and the fine-tuning stages.

The results of the ablation experiments on the kidney dataset
are presented in Table 4. We assess the models that have
been pre-trained and fine-tuned using different strategies on
the batch correlation task, utilizing the NMI and ASWb met-
rics. A consistent decline in performance is observed upon
the exclusion of both types of information, underscoring the
efficacy of these strategies in supervising the model to learn
high-quality cell representation with better preservation of
cell-specific information.

5. Conclusion
In this paper, we introduce EpiFoundation, a foundational
model for scATAC-seq. In order to address the challenge
of modeling single cells from the high-dimensional sparse
space of peaks, we propose representing cell embeddings
using the set of non-zero peaks, alongside peak-to-gene
alignment to guide the model to link the correlation be-
tween the peak and gene modalities. Furthermore, we have
compiled a dataset comprising more than 100,000 scATAC-
seq data with paired scRNA-seq, advancing the progress of
research in this domain. Our proposed foundation model
achieves state-of-the-art performance across various tasks
including cell type annotation, batch correlation, and gene
expression prediction, presenting significant potential for
enhanced single-cell modeling from scATAC-seq. In our
future work, we will focus on the development of a more
comprehensive single-cell foundation model based on the
methodologies and data established in this work, with the
objective of unifying multiple modalities including scRNA-
seq, scATAC-seq, and nucleotide sequences.
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A. Data Collection and Processing
A.0.1. DATA DOWNLOAD

Raw sequencing data of Multiome was downloaded from both GEO and ENCODE. For data from GEO, meta data and raw
data URL can be obtained through R package GEOquery (version 2.62.2). Multiome samples from ENCODE were queried
and downloaded directly from the ENCODE data portal (https://www.encodeproject.org/).

A.0.2. SEQUENCING DATA PROCESSING

Sequencing reads files in FASTQ format downloaded from GEO and ENCODE were processed with 10x Cell Ranger
ARC software (version 2.0.1) to align the reads to the human GRCh38 genome (10x version 2020-A-2.0.0). Cell Ranger
generated gene-cell count matrix for RNA and fragments file for ATAC. All ATAC fragments files were merged to call
peaks using MACS2 with non-standard and blacklist regions filtered out. Peak-cell count matrix was then calculated using
FeatureMatrix function provided by Signac. Cells that met the following six criteria were retained: number of RNA
reads greater than 1,000; number of RNA reads fewer than 25,000; number of ATAC reads greater than 1,000; number of
ATAC reads fewer than 100,000; nucleosome signal (calculated by Signac’s NucleosomeSignal function) less than
2; and TSS enrichment score (calculated by Signac’s TSSEnrichment function) greater than 1. We also generated a
binarized peak-cell count matrix, where counts were set to 1 for values greater than 1.

A.0.3. CELL TYPE ANNOTATION

Seurat was used to further process the gene-cell count matrix in RNA modality. Specifically, the count matrix was normalized
and log-transformed using the function NormalizeData. The top 2,000 variable genes were selected by the function
FindVariableGenes. The normalized gene-cell matrix was scaled by ScaleData, and principal component analysis
(PCA) was performed by RunPCA.

For ATAC modality, the raw peak-cell count matrix was processed by Signac. Specifically, top abundant features were
selected using FindTopFeatures and kept for later data analysis. The count matrix was normalized using TF-IDF using
FunTFIDF function, and performed dimension reduction using latent semantic indexing (LSI) provided by RunSVD.

RNA and ATAC modalities were integrated using FindMultiModalNeighbors with PCA of RNA and LSI of ATAC
as the input to construct a weighted nearest neighbor (WNN) graph. Cell clustering was performed using the Louvain
algorithm (FindClusters) with a resolution of 1. Average RNA expression of each cluster was then computed for cell
type annotation.

To assign each cell cluster with a cell type, we downloaded the known cell type expression profile provided through the
DISCO database. For each sample, we first selected the corresponding tissue in DISCO and obtained the log-normalized
expression profile of each tissue. Cell type was assigned using the algorithm described by DISCO. Specifically, Spearman
correlation was computed between each DISCO cell type-specific expression and each Multiome cluster expression using
the top 3000 most variable genes. For each Multiome cluster, a cell type was assigned as the cell type in DISCO that has the
highest correlation coefficient with the cluster.

B. Technique Details
B.1. Training Details

We provide all experiment configurations in the Table 5.

B.2. Comparing Methods

B.2.1. BATCH CORRECTION

Multiple methods have been developed to correct batch effects for single-cell ATAC-seq. Here, we only include those
shown (Luecken et al., 2022) to be top-ranked for single-cell ATAC-seq data integration.

• PCA (Principal Component Analysis) is a way to merge samples together without any batch correction.
In theory, PCA result will keep the original batch variation of samples. Here we utilized the function
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Table 5. Additional experiment details. Including (1) Model Configuration, and (2) Training Hyper-parameters

Parameters Value

Model
Configuration

Attention Blocks 6
Attention Heads 8
Max scATAC-seq Length 12,000
Max scRNA-seq Length 8,000
Embedding Dim 512

Training
Hyper-parameters

Dropout 0.15
Epoches 140
Learninig Rate 1e-4
LR Scheduling Cosine Annealing
Graindent Accumulation Steps 20
Batch Size 8
Optimizer Adam

scib.integration.harmony provided by Python package scIB (version 1.1.7) (Luecken et al., 2022) to obtain
PCA embeddings of cells.

• Harmony (Korsunsky et al., 2019) is a single-cell batch correction method that utilizes an iterative soft clustering
approach to align cells across different batches. It operates by projecting cells into a shared low-dimensional space
using Principal Component Analysis (PCA), then iteratively adjusts cell embeddings to minimize batch effects while
preserving biological variation. Here we use the function scib.integration.harmony provided by Python
package scIB (version 1.1.7) (Luecken et al., 2022) with log-normalized binarized peak-cell count matrix as input to
compute the latent spaces of Harmony.

• LIGER (Linked Inference of Genomic Experimental Relationships) (Welch et al., 2019) uses integrative non-negative
matrix factorization (iNMF) to identify shared and dataset-specific factors across batches. It decomposes binarized
peak-cell matrices from multiple datasets into shared latent factors that capture biological signals and unique factors
that account for dataset-specific variation. The Python package pyliger (version 0.2.3) was adapted to compute LIGER
embeddings.

• scANVI (single-cell annotation using variational inference) (Xu et al., 2021) is a batch correction and cell type
annotation method based on variational autoencoder. It extends the scVI framework by integrating labeled and
unlabeled single-cell data to harmonize batches while simultaneously learning cell type-specific latent representations.
In this paper, we applied scib.integration.scanvi function with binarized raw ATAC-seq count matrix as
input to compute scANVI embeddings.

B.2.2. RNA PREDICTION

Gene activity is widely applied as the replacement of gene expression in single-cell ATAC-seq data by summarizing the
ATAC-seq reads near the transcription start sites of genes. Here, gene activity was calculated using GeneActivity func-
tion provided by Signac. Raw gene activity was then normalized and log-transformed using the function NormalizeData
provided by Seurat.

B.3. Metrics

B.3.1. BATCH CORRECTION

We used two categories of metrics to evaluate the performance of models on batch correction (Luecken et al., 2022). The
first category evaluates biological conservation after batch correction and includes the isolated label score (ISO), normalized
mutual information (NMI), average silhouette width with respect to cell type (cASW), and cell-type local inverse Simpson
index (cLISI). The second category focuses on batch integration and includes the average silhouette width with respect to
batch (bASW) and graph connectivity (GC).

• ISO: Isolated Label Score (ISO) is a metric to quantify the capability of the integration method to retain meaningful
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biological structure across batches. For a given cell type i that occurs in ki batches, the ILS is calculated by averaging
the ASW values for cell types present in kmin batches, where kmin is the smallest number among all ki values.

• NMI: Normalized Mutual Information (NMI) is a metric used to evaluate the similarity between two clusterings by
quantifying the amount of information shared between them. It is derived from mutual information, a concept in
information theory that measures the dependency between two variables. NMI is normalized to ensure the score ranges
between 0 and 1, where 1 indicates perfect alignment between the clusterings, and 0 signifies no shared information.
Mathematically, NMI is defined as:

NMI(U, V ) =
2 · I(U, V )

H(U) +H(V )

Where:

– U and V represent the two clustering results being compared.
– I(U, V ) is the mutual information, calculated as:

I(U, V ) =
∑
u∈U

∑
v∈V

P (u, v) log
P (u, v)

P (u)P (v)

where P (u, v) is the joint probability of a data point belonging to cluster u in U and cluster v in V , and P (u),
P (v) are the marginal probabilities.

– H(U) and H(V ) are the entropies of U and V , respectively:

H(U) = −
∑
u∈U

P (u) logP (u)

The final NMI is the maximum NMI when compare clustering result under different clustering resolutions to ground-
truth cell type labels.

• ASW: Average Silhouette Width (ASW) is a metric used to evaluate the quality of clustering by measuring how well
each data point lies within its assigned cell types (cASW) or batches (bASW). It is derived from the silhouette score,
which assesses the cohesion and separation of clusters. The silhouette score for a single data point i is calculated as:

s(i) =
b(i)− a(i)

max(a(i), b(i))

where:

– a(i) is the average distance between i and all other points within the same cluster (intra-cluster distance).
– b(i) is the minimum average distance between i and all points in the nearest neighboring cluster (inter-cluster

distance).

The value of original ASW should be [−1, 1] where higher value indicate better biological conservation in cASW
and pool batch correction in bASW. To make the result consistency, cASW is scaled to the range of 0 to 1 by:
cASW = cASW+1

2 . bASW is transformed to the range of 0 to 1 through bASW = 1− |bASW| so that bigger bASW
values indicate better batch correction.

• cLISI: Local Inverse Simpson’s Index (LISI) is a metric used to evaluate the performance of integration algorithms. It
measures the local diversity of cells in a neighborhood, quantifying how well cells from cell types (cLISI) are mixed.
Mathematically, LISI is derived from the Simpson’s Index, which measures diversity within a neighborhood. For a cell
i, the local inverse Simpson’s index is calculated as:

LISI(i) =

 ∑
j∈N (i)

p2j

−1

where:

– N (i) is the neighborhood of cell i (defined by k-nearest neighbors in the embedding space).
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– pj is the proportion of cells in the neighborhood belonging to a cell type or batch j.

A higher LISI indicates between mixing of cell types or batches. To make value score of each metric consistent, we
applied linear transformation to cLISI as LISI = (L− LISI)/(L− 1) where L is the number of unique cell types.

• GC: Graph connectivity measures how well cells of the same cell type are connected within a KNN graph. Math-
ematically, for a given cell i with group label gi, let N (i) represent its set of k-nearest neighbors in the KNN. The
connectivity score for i is defined as:

C(i) =

∑
j∈N (i) δ(gi, gj)

k

where:

– δ(gi, gj) = 1 if gi = gj , and 0 otherwise.
– k is the number of nearest neighbors considered.

A high KNN connectivity score indicates that cells from the same cell type are tightly connected, reflecting good
preservation of local structure and better mixing of batches.

B.3.2. CELL TYPE CLASSIFICATION

The performance of cell type classification was evaluated using accuracy(ACC), Macro F1 score, Micro F1 score, and
ROC-AUC.

• ACC: Accuracy measures the proportion of correctly classified instances among the total instances in a dataset. This
metric is calculated using the function sklearn.metrics.accuracy score.

• Macro F1: The Macro F1 score is calculated as the averaged F1 score for each class. This metric is computed through
sklearn.metrics.f1 score with the parameter average=’macro’.

• Micro F1: Micro F1 score is computed through sklearn.metrics.f1 score with the parameter
average=’micro’. In order to calculate Micro F1, it computes the overall precision and recall across all classes.

Precision =
Total True Positives

Total Predicted Positives

Recall =
Total True Positives

Total Actual Positives
Using the global precision and global recall, the Micro F1 score is :

Micro F1 = 2× Precision × Recall
Precision + Recall

B.3.3. GENE PREDICTION

Mean square error (MSE), Spearman Correlation Coefficient (SRCC), and Pearson Correlation Coefficient (PRCC) were
computed between predicted gene expression and the ground-truth gene expression from RNA modality. Specifically, each
metrics were computed as below:

• MSE: The Mean Squared Error (MSE) is a common metric used to measure the average squared difference between
predicted values (ŷi) and actual values (yi). It is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where:

– n is the number of observations,
– yi is the true value of the i-th observation,
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– ŷi is the predicted value of the i-th observation.

• SRCC: The Spearman correlation coefficient (ρ or rs) is a non-parametric measure of the strength and direction of the
association between two ranked variables. It is calculated using the formula:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where:

– di is the difference between the ranks of the corresponding values in the two vectors,
– n is the length of each vector.

SRCC of each gene was calculated using the function scipy.stats.spearmanr and then averaged.

• PRCC: The Pearson correlation coefficient (r) measures the strength and direction of the linear relationship between
two variables, X (predicted expression of a gene) and Y (ground truth expression of the same gene). It is calculated as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

where:

– n is the number of data points,
– Xi, Yi are the individual data points of X and Y ,
– X̄, Ȳ are the means of X and Y .

PRCC of each gene was calculated using the function scipy.stats.pearsonr and then averaged.

C. Additional Experiment Results
Here we provide additional experimental results. Figure 5 compares the clustering map between EpiFoundation and other
batch correlation methods on the Kidney dataset. And Figure 6 demonstrates additional classification heat-maps for the cell
type annotation task on BMMC and Kidney datasets.

Figure 5. Qualitative comparison on batch correlation on Kidney dataset.
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Figure 6. Classification performance of EpiFoundation on BMMC and Kidney dataset.
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